How to install Cluster Autoscaler on AWS EKS

A quick rundown on how to install Cluster Autoscaler on AWS EKS.

CA on EKS!

What is Cluster Autoscaler (CA)

Cluster Autoscaler is not a new word in the Kubernetes world. It’s a program that scales out or scales in the Kubernetes cluster as per capacity demands. It is available on Github here.

For scale-out action, it looks for any unschedulable pods in the cluster and scale-out to make sure they can be scheduled. If CA is running with default settings, then it checks every 10 seconds. So basically it detects and acts for scale-out in 10 secs.

For scale in action it watches nodes for their utilization and any underutilized node will be elected for scale in. The elected node will have to remain in an un-needed state for 10 minutes for CA to terminate it.

CA on AWS EKS

As you know now, CA’s core functionality is spawning new nodes or terminating the un-needed ones, it’s essential it must be having underlying infrastructure access to perform these actions.

In AWS EKS, Kubernetes nodes are EC2 or FARGATE compute. Hence, Cluster Autoscaler running on EKS clusters should be having access to respective service APIs to perform scale out and scale in. It can be achieved by creating an IAM role with appropriate IAM policies attached to it.

Cluster Autoscaler should be running in a separate namespace (kube-system by default) on the same EKS cluster as a Kubernetes deployment. Let’s look at the installation

How to install Cluster Autoscaler on AWS EKS

Creating IAM role

IAM role of Autoscaler needs to have an IAM policy attached to it with the below permissions –

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Action": [
                "sts:AssumeRole",
                "autoscaling:DescribeAutoScalingGroups",
                "autoscaling:DescribeAutoScalingInstances",
                "autoscaling:DescribeLaunchConfigurations",
                "autoscaling:DescribeTags",
                "autoscaling:SetDesiredCapacity",
                "autoscaling:TerminateInstanceInAutoScalingGroup",
                "ec2:DescribeLaunchTemplateVersions"
            ],
            "Resource": "*",
            "Effect": "Allow"
        }
    ]
}

You will need to use this policy ARN in eksctl command. Also, make sure you have an IAM OIDC provider associated with your EKS cluster. Read more in detail here.

As mentioned above, we need to have an IAM role in a place that can be leveraged by Cluster Autoscaler to perform resource creation or termination on AWS services like EC2. It can be done manually, but it’s recommended to perform it using eksctl command for its comfort and perfection! It takes care of trust relationship policy and related conditions while setting up a role. If you do not prefer eksctl then refer to this document to create it using AWS CLI or console.

You need to run it from the terminal where AWS CLI is configured.

# eksctl create iamserviceaccount --cluster=<CLUSTER-NAME> --namespace=<NAMESPACE> --name=cluster-autoscaler --attach-policy-arn=<MANAGED-POLICY-ARN> --override-existing-serviceaccounts --region=<CLUSTER-REGION> --approve

where –

  • CLUSTER-NAME: Name of the EKS Cluster
  • NAMESPACE: ns under which you plan to run CA. Preference: kube-system
  • CLUSTER-REGION: Region in which EKS Cluster is running
  • MANAGED-POLICY-ARN: IAM policy ARN created for this role
# eksctl create iamserviceaccount --cluster=blog-cluster --namespace=kube-system --name=cluster-autoscaler --attach-policy-arn=arn:aws:iam::xxxxxxxxxx:policy/blog-eks-policy --override-existing-serviceaccounts --region=us-east-1 --approve
2022-01-26 13:45:11 [&#x2139;]  eksctl version 0.80.0
2022-01-26 13:45:11 [&#x2139;]  using region us-east-1
2022-01-26 13:45:13 [&#x2139;]  1 iamserviceaccount (kube-system/cluster-autoscaler) was included (based on the include/exclude rules)
2022-01-26 13:45:13 [!]  metadata of serviceaccounts that exist in Kubernetes will be updated, as --override-existing-serviceaccounts was set
2022-01-26 13:45:13 [&#x2139;]  1 task: {
    2 sequential sub-tasks: {
        create IAM role for serviceaccount "kube-system/cluster-autoscaler",
        create serviceaccount "kube-system/cluster-autoscaler",
    } }2022-01-26 13:45:13 [&#x2139;]  building iamserviceaccount stack "eksctl-blog-cluster-addon-iamserviceaccount-kube-system-cluster-autoscaler"
2022-01-26 13:45:14 [&#x2139;]  deploying stack "eksctl-blog-cluster-addon-iamserviceaccount-kube-system-cluster-autoscaler"
2022-01-26 13:45:14 [&#x2139;]  waiting for CloudFormation stack "eksctl-blog-cluster-addon-iamserviceaccount-kube-system-cluster-autoscaler"
2022-01-26 13:45:33 [&#x2139;]  waiting for CloudFormation stack "eksctl-blog-cluster-addon-iamserviceaccount-kube-system-cluster-autoscaler"
2022-01-26 13:45:50 [&#x2139;]  waiting for CloudFormation stack "eksctl-blog-cluster-addon-iamserviceaccount-kube-system-cluster-autoscaler"
2022-01-26 13:45:52 [&#x2139;]  created serviceaccount "kube-system/cluster-autoscaler"

The above command prepares the JSON CloudFormation template and deploys it in the same region. You can visit the CloudFormation console and check it.

Installation

If you choose to run CA in different namespace by defining custom namespace in manifest file, then replace kube-system with appropriate namespace name in all below commands.

Download and prepare your Kubernetes to manifest file.

# curl -o cluster-autoscaler-autodiscover.yaml https://raw.githubusercontent.com/kubernetes/autoscaler/master/cluster-autoscaler/cloudprovider/aws/examples/cluster-autoscaler-autodiscover.yaml
# sed -i 's/<YOUR CLUSTER NAME>/cluster-name/g' cluster-autoscaler-autodiscover.yaml

Replace cluster-name with EKS cluster name.

Apply the manifest to your EKS cluster. Make sure you have the proper context set for your kubectl command so that kubectl is targeted to the expected EKS cluster.

# kubectl apply -f cluster-autoscaler-autodiscover.yaml
serviceaccount/cluster-autoscaler configured
clusterrole.rbac.authorization.k8s.io/cluster-autoscaler created
role.rbac.authorization.k8s.io/cluster-autoscaler created
clusterrolebinding.rbac.authorization.k8s.io/cluster-autoscaler created
rolebinding.rbac.authorization.k8s.io/cluster-autoscaler created
deployment.apps/cluster-autoscaler created

Add annotation to cluster-autoscaler service account with ARN of the IAM role we created in the first step. Replace ROLE-ARN with IAM role arn.

# kubectl annotate serviceaccount cluster-autoscaler -n kube-system eks.amazonaws.com/role-arn=<ROLE-ARN>
$ kubectl annotate serviceaccount cluster-autoscaler -n kube-system eks.amazonaws.com/role-arn=arn:aws:iam::xxxxxxxxxx:role/eksctl-blog-cluster-addon-iamserviceaccount-Role1-1X55OI558WHXF --overwrite=true
serviceaccount/cluster-autoscaler annotated

Patch CA for adding eviction related annotation

# kubectl patch deployment cluster-autoscaler -n kube-system -p '{"spec":{"template":{"metadata":{"annotations":{"cluster-autoscaler.kubernetes.io/safe-to-evict": "false"}}}}}'
deployment.apps/cluster-autoscaler patched

Edit CA container command to accommodate below two arguments –

  • --balance-similar-node-groups
  • --skip-nodes-with-system-pods=false
# NEW="        - --balance-similar-node-groups\n        - --skip-nodes-with-system-pods=false"
# kubectl get -n kube-system deployment.apps/cluster-autoscaler -o yaml | awk "/- --node-group-auto-discovery/{print;print \"$NEW\";next}1" > autoscaler-patch.yaml
# kubectl patch deployment.apps/cluster-autoscaler -n kube-system --patch "$(cat autoscaler-patch.yaml)"
deployment.apps/cluster-autoscaler patched

Make sure the CA container image is the latest one in your deployment definition. If not you can choose a new image by running –

# kubectl set image deployment cluster-autoscaler -n kube-system cluster-autoscaler=k8s.gcr.io/autoscaling/cluster-autoscaler:vX.Y.Z

Replace X.Y.Z with the latest version.

$ kubectl set image deployment cluster-autoscaler -n kube-system cluster-autoscaler=k8s.gcr.io/autoscaling/cluster-autoscaler:v1.21.1
deployment.apps/cluster-autoscaler image updated

Verification

Cluster Autoscaler installation is now complete. Verify the logs to make sure Cluster Autoscaler is not throwing any errors.

# kubectl -n kube-system logs -f deployment.apps/cluster-autoscaler

Creating Identity provider for AWS EKS

A quick post on creating EKS OIDC provider.

EKS OIDC provider!

We will be creating OpenID Connect Identity Provider for the AWS EKS cluster in the IAM service. It will enable to establish trust between AWS account and Kubernetes running on EKS. For using IAM roles with service accounts created under the EKS cluster, it must have the OIDC provider associated with the cluster. Hence, it’s important to have this created at the beginning of the project along with the cluster.

Let’s get into steps to create an OIDC provider for your cluster.

First, you need to get the OpenID Connect provider URL from EKS Cluster.

  • Navigate to EKS console
  • Click on Cluster name
  • Select Configuration tab and check under Details
OpenID URL on EKS console.

Now head back to the IAM console

  • Click on Identity providers under Access management on left hand side menu
  • Click on Add provider button
Add provider in IAM
  • Select OpenId Connet
  • Paste EKS OpenId provider URL in the give field
  • Click on Get thumbprint button
  • Add sts.amazonaws.com in Audience field
  • Click on Add provider button.
IdP thumbprint

Identity provider is created! View its details by clicking on the provider name.

EKS OIDC

If you are using CloudFormation as an IaC tool then below resource block can be used to create OIDC for the EKS cluster :

OidcProvider:
    Type: AWS::IAM::OIDCProvider
    Properties: 
      Url: !GetAtt EksCluster.OpenIdConnectIssuerUrl
      ThumbprintList: 
        - 9e99a48a9960b14926bb7f3b02e22da2b0ab7280
      ClientIdList:
        - sts.amazonaws.com

Where –

  • EksCluster is the logical ID of the EKS cluster resource in the same CloudFormation template.
  • 9e99a48a9960b14926bb7f3b02e22da2b0ab7280 is EKS thumbprint for region us-east-1. Refer this document to get thumbprints.

How to configure kubectl for AWS EKS

Steps to configure CLI for running kubectl commands on EKS clusters.

kubectl with EKS!

kubectl is the command-line utility used to interact with Kubernetes clusters. AWS EKS is AWS managed Kubernetes service broadly used for running Kubernetes workloads on AWS Cloud. We will be going through steps to set up the kubectl command to run with the AWS EKS cluster. Without further due, let’s get into it.

AWS CLI configuration

Install AWS CLI on your workstation and configure it by running –

# aws configure
AWS Access Key ID [None]: AKIAQX3SNXXXXXUVQ
AWS Secret Access Key [None]: tzS/a1sMDxxxxxxxxxxxxxxxxxxxxxx/D
Default region name [us-west-2]: us-east-1
Default output format [json]: json

If you require to switch roles before you can access your AWS environment then configure your CLI with roles.

Once configured, verify your CLI is working fine and reaching to appropriate AWS account.

# aws sts get-caller-identity
{
    "UserId": "AIDAQX3SNXXXXXXXXXXXX",
    "Account": "xxxxxxxxxx",
    "Arn": "arn:aws:iam::xxxxxxxxxx:user/blog-user"
}

kubectl configuration

Install kubectl command if not already. Update kubeconfig with the cluster details you want to connect to –

# aws eks --region us-west-2 update-kubeconfig --name <CLUSTER-NAME>
# aws eks --region us-east-1 update-kubeconfig --name blog-cluster
Added new context arn:aws:eks:us-east-1:xxxxxxxxxx:cluster/blog-cluster to C:\Users\linux\.kube\config

At this point your kubeconfig point to the cluster of your interest. You can execute kubectl commands and those will be executed against the cluster you mentioned above.

# kubectl get pods --all-namespaces
NAMESPACE     NAME                       READY   STATUS    RESTARTS   AGE
kube-system   coredns-66cb55d4f4-hk9p5   0/1     Pending   0          6m54s
kube-system   coredns-66cb55d4f4-wmtvf   0/1     Pending   0          6m54s

I did not add any nodes yet to my EKS cluster hence you can see pods are in a pending state.

If you have multiple clusters configured in kubeconfig then you must switch context to interested cluster before running kubectl commands. To switch context –

# kubectl config use-context <CONTEXT-NAME>
# kubectl config use-context arn:aws:eks:us-east-1:xxxxxxxxxx:cluster/blog-cluster
Switched to context "arn:aws:eks:us-east-1:xxxxxxxxxx:cluster/blog-cluster".

You can verify all configured contexts by analysing ~/.kube/config file.

Troubleshooting errors

If your IAM user (configured in AWS CLI) is not authorized on the EKS cluster then you will see this error –

# kubectl get pods --all-namespaces
error: You must be logged in to the server (Unauthorized)

Make sure your IAM user is authorised in the EKS cluster. This can be done by adding user details under mapUsers field in the configmap named aws-auth residing in kube-system namespace. You will be able to fetch and edit it with the user who built the cluster in the first place. By default, AWS adds the IAM user as system:masters in config map who built the cluster. You have to configure the same IAM user with kubectl and edit this configmap for adding other IAM users to the cluster.

$ kubectl get -n kube-system configmap/aws-auth -o yaml
apiVersion: v1
data:
  mapRoles: |
    - groups:
      - system:bootstrappers
      - system:nodes
      rolearn: arn:aws:iam::xxxxxxxxxx:role/blog-eks-role
      username: system:node:{{EC2PrivateDNSName}}
  mapUsers: |
    - userarn: arn:aws:iam::xxxxxxxxxx:user/blog-user
      username: blog-user
      groups:
        - system:masters

GitBash not prompting for MFA in AWS CLI

A quick post on how to resolve an issue with Gitbash that prevents MFA prompts while using AWS CLI.

MFA GitBsah issue.

Problem

GitBash under the hood uses winpty emulator for providing a bash experience on windows. Winpty does not work well with AWS CLI especially when dealing with MFA prompts. Hence you need to replace this with bash.exe and you should be good.

Procedure

Go to the Windows start menu and search for Git Bash. Click on Open file location.

Right click on the shortcut and select Properties

Under properties change the target from “C:\Program Files\Git\git-bash.exe” to “C:\Program Files\Git\bin\bash.exe

Now launch GitBash and you should be good.

How to resolve the MFA entity already exists error

A quick fix for error MFA entity already exists.

IAM says MFA exists when its not!

Issue

The user is not able to register an MFA device. When a user tries to assign a new MFA, IAM throws an error –

This entity already exists. MFADevice entity at the same path and name already exists. Before you can add a new virtual MFA device, ask your administrator to delete the existing device using the CLI or API.
MFA assignment error

Whereas if you as admin or even user check the AWS console it shows Assigned MFA device as Not assigned for that user.

Resolution

As an administrator, you need to delete the MFA device (yes even if says not assigned) using AWS CLI. The performer needs to have IAM permission iam:DeleteVirtualMFADevice on to the given resource to update the IAM user’s MFA.

Run below command from AWS CLI –

# aws iam delete-virtual-mfa-device --serial-number arn:aws:iam::&lt;AWS account number>:mfa/&lt;username>

where –

  • AWS account number is account number where user exists
  • username is IAM username of that user

This should clear out the error message and the user should be able to register a new MFA device.

How to configure EC2 for Session Manager

A quick reference to configure EC2 for Session Manager in AWS

EC2 session manager!

Ok this must be a very basic post for most of you and there is a readily available AWS doc for it, but I am just cutting it short to list down steps for achieving the objective quickly. You should go through the official AWS doc to understand all aspects of it but if you are on the clock then just follow along and get it set up in no time.

Checklist

Before you start, make sure you checked out these minimum configurations to get going.

  1. Your EC2 is running supported Opertaing System. We are taking example of Linux here so all Linux versions that supports AWS Systems Manager supports session manager.
  2. SSM agent 2.3+ installed on system. If not, we got it covered here.
  3. Outbound 443 traffic should be allowed to below 3 endpoints. You must have this already covered since most of the setups has ALL traffic aalowed in outgoing security group rule. –
    • ec2messages.region.amazonaws.com
    • ssm.region.amazonaws.com
    • ssmmessages.region.amazonaws.com

In a nutshell, probably point 2 is the one you need to verify. If you are using AWS managed AMI then you got it covered for that too! But, if you are using custom-built, home-grown AMI then that might not be the case.

SSM agent installation

It’s a pretty basic RPM installation as you would do on any Linux platform. Download package relevant to your Linux version from here. Or global URLs for Linux agents –

Run package installation and service handler commands with root privileges as below –

# systemctl enable amazon-ssm-agent
# systemctl start amazon-ssm-agent
# systemctl status amazon-ssm agent

If you do not have access to EC2 (Key lost or EC2 without keypair) then probably you need to re-launch the EC2. If your EC2 is part of an auto-scaling group (ASG) then it makes sense to add these commands in the user-data script for the launch template and launch a new EC2 from ASG.

Instance role permissions

Now the agent is up and running. The next step is to authorize the AWS Systems Manager service to perform actions on EC2. This is done via Instance Role. Create the IAM instance role with below IAM policy:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "ssm:UpdateInstanceInformation",
                "ssmmessages:CreateControlChannel",
                "ssmmessages:CreateDataChannel",
                "ssmmessages:OpenControlChannel",
                "ssmmessages:OpenDataChannel"
            ],
            "Resource": "*"
        }
    ]
}

You can scope it down to a particular resource if you want. You can even add KMS encryption-related permissions in it if you are planning to encrypt session data using KMS encryption. An example can be found here.

Once done attach the role to EC2. If EC2 is already having a role attached to it then add the above policy to the existing role and you should be good.

IAM instance profile

Connecting via Session Manager

Now you are good to test the connection.

  • Login to EC2 console.
  • Navigate to instances and selct the respective EC2 instance from the list.
  • Click on Connect button
Connecting to session manager from EC2 console
  • Make sure you are on Serssion Manager tab and click on Connect.
  • If you still see error reported on this screen then give it a minute or two. Sometimes it takes some seconds to propagate IAM role permissions.
Connect to the instance using session manager

New browser tab will open and you should be seeing the Linux prompt.

Instance connected!

Notice you are logged in with the default user ssm-user. You can switch to root user by using sudo.

There are a couple of benefits to using session manager as standard over Key pairs :

  • No need to maintain key files.
  • Avoid security threat posed to infra associated with Key file management.
  • Access management is easy through IAM.
  • Native AWS feature!
  • Session can be logged for audit purposes.

Preparing for Certified Kubernetes Administrator (CKA) exam

A small rundown on CKA preparation.

CKA Preparations!

In this post, I will be sharing various resources to help you prepare for the CKA exam. In addition, feel free to add resources you know in the comments section, which may help fellow readers.

Exam details

  • Offered by: The Cloud Native Computing Foundation (CNCF)
  • Duration: 2 hours
  • Type: Complete tasks on Linux CLI (Practical)
  • Number of questions/tasks: 15-20 (I had 17)
  • Mode: Online proctored
  • Cost: $375 (that includes one free retake). Watch out over LinkedIn or internet for coupons. They got good deals on black friday as well.
  • Result: It will be available in 24 hours from the exam completion.
  • You are allowed to open one additional browser tab to access K8s docs, K8s Github or K8s blog. You should not be clicking/opening any links other than these domains that includes K8s forum as well.

Study journey

  • Practise course labs heavily. You may go through course quickly to understand the Kubernetes world but you need to spend more time on practising Kubernetes on CLI.
  • Online free labs for practising :
  • Once you are good with the theory and understood all aspects of Kubernetes world, Labs are the only places where you should spend all of your study time.
  • Once you are through all the scenarios/tasks provided by online courses, you can think of your own custom scenarios and try implementing them.

Tips

Practise! Practise!! Practise!!! The more you are familiar with the CLI and commands, the more time you will save during the exam. In addition, it helps to build your muscle memory for command arguments and gain those extra seconds during the exam.

CKA requires you to complete the given tasks in the Linux terminal (Ubuntu) CLI on a shared Kubernetes cluster setup. So, having good Linux background is added plus! Moreover, it helps you in navigating through CLI, editing files and save a lot of time.

Make use of -h frequently! If you are not sure about the command arguments, use a -h flag that lists arguments along with example commands. You can directly copy those example commands and edit them accordingly before executing. A quick way to get the job done rather than navigating through kubectl commands on Kubernetes documentation

Try to complete tasks using imperative commands rather than building spec files.

Read the question carefully and completely before creating any objects. Keep an eye on the namespaces mentioned in the questions. Assume default namespace when no specific namespace is mentioned.

Verify created objects to make sure they carry properties asked in questions. For pods, make sure they reach running state before proceeding.

Setting alias in Linux shell is one of the famous tips you will come across over the internet. Use it according to your comfort. I did not use it.

Always make sure you run the given context commands at the start of each task. It makes sure you are on the right cluster to perform the task.

Always make sure to return to the main terminal if you are doing ssh to other nodes for performing the tasks.

For Tasks mentioning sudo -i for root privileges, it’s good practice to switch to root as soon as you log in to the respective node rather than finding out you are not run after running some commands and investing time there!

If you are not familiar with Linux editors like vi, edit your spec files in the exam provided notepad and then copy the final version of the config directly on the terminal within the file rather than running around in Linux editors and wasting time.

Get familiar with copy, paste operations in the terminal. There are different key combinations depending on the operating system. Refer exam handbook for the same. Then, practise using those key combinations.

Use kubernetes.io/docs heavily during practice. If you are stuck at something, always try to search and get information from Kubernetes official documentation. This will make you comfortable navigating through the documentation site and hence saves some time during the exam. In addition, you will know exact keywords to search and exact links to click on topics you had a hard time studying.

It’s the student’s responsibility not to click/open any other sites than the allowed three. Search in K8s documentation may yield results with links to the K8s forum. You should not be clicking them. Make a habit of checking links before opening to avoid issues during the exams.

Please note that the exam simulator you get along with your exam booking has more challenging questions than the actual exam. They mentioned it explicitly there. So if your morale goes down pretty quickly, then it’s best not to check those questions just before the exam :P. They aim more at getting an in-depth understanding of how things run under the hood.

That’s all I have. All the best!

How to configure switching IAM roles in AWS CLI?

A short howto on configuring AWS CLI to switch roles

AWS CLI Switch Roles configuration

Requirement:

You have one AWS account that needs to switch roles before executing things on AWS. It’s an easy method on AWS console, but how to switch roles in AWS CLI.

Solution:

Let’s consider the below setup-

  • AWS IAM account with programmatic access – user101
  • Same IAM account having sts:AsumeRole permissions.
  • AWS IAM role for above said IAM user to assume (same or cross-account)- role101

Start with configuring the AWS CLI in a standard way.

$ aws configure --profile user101
AWS Access Key ID [None]: AKIAQX3SNXZGUQFOSK4T
AWS Secret Access Key [None]: 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
Default region name [us-east-1]: us-east-1
Default output format [None]: json

Note: It is not a good practice to keep AWS credentials in a plain text format. Keep them in a secured encrypted way using aws-auth.

Now, at this point, you must have an AWS credentials file created in the home directory.

$ cd ~/.aws
$ cat credentials
[user101]
aws_access_key_id = AKIAQX3SNXZGUQFOSK4T
aws_secret_access_key = 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
region = us-east-1
output = json

You need to edit the above credentials file to add IAM role details. Append the below configuration in the file.

If you are working with AWS Gov Cloud make sure the ARNs has proper AWS Partition defined. E.g. arm:aws-us-gov:x:x:…..
[role101]
role_arn = arn:aws:iam::xxxxxxxxx:role/role101
output = json
source_profile = user101

where –

  • role101 is a Role identifier. You can choose as per your choice.
  • Mention the correct IAM role ARN
  • source_profile should use the profile identifier of the user who will assume this role. In our case, its user101.

Save the file, and you are ready to go.

Test configurations –

$ aws sts get-caller-identity
{
    "UserId": "AIDAQX3SNXZG3Z2AXNIMJ",
    "Account": "xxxxxxxxx",
    "Arn": "arn:aws:iam::xxxxxxxxx:user/user101"
}

$ aws sts get-caller-identity --profile role101
{
    "UserId": "AROAQX3SNXZG6KL4YENFZ:botocore-session-1631087792",
    "Account": "xxxxxxxxx",
    "Arn": "arn:aws:sts::xxxxxxxxx:assumed-role/role101/botocore-session-1631087792"
}

You can see this by using --profile role101 we are assuming the IAM role role101 for the user user101.

AWS CLI configuration for switching roles using MFA

Note: If you are on Windows and using GitBash, refer to configuring GitBash for MFA prompts. It works perfectly in Powershell.

In some cases, your AWS environment must have MFA restrictions in place where the user user101 must have MFA enabled to switch to the role role101. In such a scenario, your role profile in credentials files should include MFA device ARN as well like below –

[role101]
role_arn = arn:aws:iam::xxxxxxxxx:role/role101
mfa_serial = arn:aws:iam::xxxxxxxxx:mfa/user101
output = json
source_profile = user101

where –

mfa_serial is the ARN of the MFA device of user101.

You will be prompted to supply the MFA code whenever you use profile role101 in AWS CLI commands.

$ aws sts get-caller-identity --profile role101
Enter MFA code for arn:aws:iam::xxxxxxxxx:mfa/user101:
{
    "UserId": "AROAQX3SNXZG6KL4YENFZ:botocore-session-1631089277",
    "Account": "xxxxxxxxx",
    "Arn": "arn:aws:sts::xxxxxxxxx:assumed-role/role101/botocore-session-1631089277"
}

How to find AWS resources that need to be tagged

A quick rundown on how to hunt AWS resources that needs tagging

Scan AWS resources to tag

Tags are the most important and equally negligible AWS entity! As AWS spread grows in an organization they start to realize the importance of tags and then comes the projects for tagging existing resources!

At this stage, the first question on the table is how to search for AWS resources that need tagging? or How can we search non-tagged AWS resources?

It’s a very short process that can be summarised in a single picture!

Searching AWS resources to tag

Breaking it down –

  1. Login to AWS Resource groups console.
  2. On left hand side menu, select Tag Editor under Tagging.
  3. Now you should have seelction on right hand side.
  4. Select perticular region or All regions from Regions drop down.
  5. Select specific resource or All supported resource types from Resource types drop down.
  6. Tags – Optional: You can specify key, value details to search for specific tags. Since we are searching for resources that are not tagged lets keep it blank.
  7. Finally, click on Search resources button and you are done!
  8. You should be presented with list of AWS resources in specified regions that needs to be tagged like below.
List of AWS resources to tag

You can export the list to CSV as well for further data analytics.